

Report on Generation IV Technical Working Group 3:

Liquid Metal Reactors

Generation IV Roadmap Session ANS Winter Meeting Reno, NV November 13, 2001

People Involved in this Work

The Membership of Technical Working Group 3 Liquid Metal Reactor

•	Stephen Rosen	Co-Chair	South Texas Project (Retired)
---	---------------	----------	-------------------------------

- Yutaka Sagayama Co-Chair JNC
 Michael Lineberry Technical Director ANL
- Charles Boardman
 GE (retired); consultant
- Jean-Louis Carbonnier
- Orlando Joao A. Goncalves
 IEN/CNEN
- Jean-Paul Glatz
 EURATOM/Karlsruhe
- Do Hee Hahn
 KAERI
- Masakazu Ichimiya
 JNC
- John Lee
 University of Michigan
- Ning Li
 Claes Nordborg
 DECD
- Claes NordborgRonald OmbergPNNL
- Kune Y. Suh Seoul National University
- John Tuohy Burns & Roe
- David Wade

 ANL

Reactor System Concepts Submitted

- 33 concepts from 8 countries submitted; 27 of which were grouped into five sets.
 - concept group A: Medium-to-large sodium-cooled, mixed-oxide fueled reactors
 with advanced aqueous reprocessing and ceramic pellet or vibratory compaction
 fabrication (5 concepts)
 - group B: Medium-to-large sodium-cooled, metal-fueled (U-TRU-Zr metal) reactors
 with electrochemical fuel cycle technology (pyroprocessing) (6 concepts)
 - group C: Medium-sized Pb or Pb-Bi cooled; MOX or Th-U-TRU-Zr metal alloy fueled reactors (one concept had nitride fuel); pyroprocess fuel cycle for the metal-fueled concepts, advanced aqueous or unspecified "dry" process for the ceramic fueled concepts. (9 concepts)

Reactor System Concepts Submitted cont.

- group D: Small, Pb or Pb-Bi cooled; metal or nitride fueled reactors with long-life
 "cartridge" or cassette cores. Fuel cycles vary. (4 concepts)
- group E: Sodium-cooled concepts that eliminate the traditional secondary sodium loops by development of novel new steam generators. (3 concepts)
- Four concepts rejected, one evaluated stand-alone, (Russian SVBR System) and one was essentially a set of principles (SCNES) to be folded into group A (and possibly B).

Technical Features

- Fuel cycle technology in the great majority of cases was the "pyroprocess" (i.e. electrometallurgical technology) or the "advanced aqueous process"
 - both aim to avoid plutonium separation
 - both will require extensive development
- Fuel fabrication
 - for pyroprocess: remote metal casting
 - for advanced aqueous: remote pellets or remote vibro-pack
- Fuels
 - mixed oxide (reference or backup in 10 concepts)
 - metal (16 concepts)
 - nitride (6 concepts)
- Coolants:
 - sodium (11 concepts)
 - lead or lead-bismuth eutectic (14 concepts)
- Sizes: from 75 MWe to 1500 MWe
- Safety: general attempt to rely on inherent safety features; design features vary greatly.

The Evaluation Thus Far

- "Screened for Potential"; the concept groups and stand-alone concept evaluated for potential to meet the Gen IV goals
 - sustainability
 - safety and reliability
 - economics
- Status of technologies evaluated
 - each concept group, and
 - "base technologies": fuels, coolants, fuel cycle
- Preliminary look taken at R&D requirements

Liquid Metal Reactor Systems and the Gen IV Goals

- Uranium resource utilization in a category by itself compared to all thermal systems.
- Significant waste volume reduction relative to ALWR once-through, but the key benefit would derive from meeting the widely-adopted goal of 99.9% recycle of all actinides.
 - greatly eases the technical requirements on repositories.
- Many of the systems claim immunity (i.e. no fuel damage) to ATWS events.
- Proliferation resistance evaluation is challenging
- Economics: the great challenge, being approached through simplification of both reactors and fuel cycle facilities.
 - smaller footprint
 - less commodities
 - reduced nuclear safety-grade equipment
 - modularity

The Road Ahead

- TWG 3 specifying needed R&D along three "tracks"
 - group A = track A
 - group B = track B
 - group C & D = track C
- Track C is more science-based, for lead or lead-bismuth coolant, emphasizing fundamental feasibility issues (e.g. coolant/structure compatibility; high temperature materials, etc.).